Molecular dynamics study of amyloid formation of two Abl-SH3 domain peptides.

نویسندگان

  • Inta Liepina
  • Salvador Ventura
  • Cezary Czaplewski
  • Adam Liwo
چکیده

Molecular dynamics (MD) simulations were carried out for two-strand and ten-strand beta-sheets constructed from two peptides corresponding to the diverging turn of two homologous Abl-SH3 domains, DLSFMKGE (MK; from Drosophila) and DLSFKKGE (KK; from man), in explicit water at the temperatures of 30, 170/190 and 300 K. It was found that the 2 x MK beta-sheet is more stable than the 2 x KK beta-sheet, and that the 10 x MK beta-sheet is more stable than the 10 x KK beta-sheet; this suggests that the MK systems are fibril-creating and the KK systems are not. These results might explain why most SH3 domains possess two conserved basic residues at the diverging turn, which may act as gatekeepers in order to avoid aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Computational Analysis and Prediction of the Binding Motif and Protein Interacting Partners of the Abl SH3 Domain

Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, th...

متن کامل

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

Identification and characterization of Src SH3 ligands from phage-displayed random peptide libraries.

We have used the Src homology 3 (SH3) domain to screen two phage-displayed random peptide libraries, each containing 2 x 10(8) unique members, and have identified a series of high affinity peptide ligands. The peptides possess similar proline-rich regions, which yield a consensus Src SH3-binding motif of RPLPPLP. We have confirmed this motif by screening a phage-displayed peptide library biased...

متن کامل

Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis.

The SH3 domain of the human protein amphiphysin-1, which plays important roles in clathrin-mediated endocytosis, actin function and signaling transduction, can recognize peptide motif PXRPXR (X is any amino acid) with high affinity and specificity. We have constructed a complex structure of the amphiphysin-1 SH3 domain and a high-affinity peptide ligand PLPRRPPRA using homology modeling and mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of peptide science : an official publication of the European Peptide Society

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2006